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The lattice-Boltzmann method (LBM) provides an efficient simulation technique for the study of particle
suspensions. These simulations provide an important tool in elucidating the effect of suspended particles
on the rheology of suspensions. The most common solid–fluid boundary condition used in the LBM is the
bounce-back operation, and as such, the errors introduced by this operation to the dynamics of the par-
ticles and the calculation of relevant rheological quantities must be quantified. This paper derives the
Galilean invariant term in the standard bounce-back operation and shows the effect of this error on
the calculation of particle dynamics and stresslet. In particular, an error is found in the calculation of nor-
mal stresses that may be significant in magnitude compared with typical values found in suspensions of
rigid spherical particles. A correction is proposed, and simulation results are shown that verify the origi-
nal assessment and show the reduction of error when using the proposed correction.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the rheology of particle suspensions is impor-
tant in many industrial and biological fields and can lead to
advancements in the handling of slurries, coating and fiber flows
in the paper-making process, and in biological flows such as blood.
Analytical tools are typically constrained to the dilute limit
(Einstein, 1906; Batchelor and Green, 1972) or in the form of
semi-empirical relationships that do not fully account for the
non-Newtonian effects seen at higher concentrations (Krieger
and Dougherty, 1959). Experimental studies of normal stresses in
non-colloidal suspensions of rigid spheres exist for higher concen-
trations (Zarraga et al., 2000; Singh and Nott, 2003); however, the
small magnitude of these stresses makes accurate measurements
difficult at lower concentrations. As a result, numerical simulations
have proved instrumental in advancing our understanding of sus-
pension rheology. In particular, Stokesian dynamics has high-
lighted the connection between microstructure and normal
stresses causing non-Newtonian behavior (Phung et al., 1996; Sie-
rou and Brady, 2002), as well as the diffusive nature found in non-
colloidal suspensions (Sierou and Brady, 2004). However, Stokesian
dynamics does have shortcomings such as being constrained to the
Stokes flow limit and limited to spherical particles. The lattice-
Boltzmann method (LBM) outlined in Section 2 allows for the
efficient simulation of particle suspensions and is capable of
simulating complex particle shapes at finite Reynolds numbers.
Additionally, the local nature of the LBM allows for significant par-
ll rights reserved.

: +1 404 894 4778.
idun).
allelism resulting in excellent scaling on distributed memory clus-
ters. Increasingly, the LBM has been used for calculating
rheological properties such as shear viscosity and normal stresses
(Kulkarni and Morris, 2008; MacMeccan et al., 2009). It is well
known that the LBM approximates the incompressible Navier–
Stokes equations with compressibility errors that grow as M2,
where M is the LBM Mach number. It is also known that the LBM
is Galilean invariant with errors of Oðu3Þ, where u is the magnitude
of fluid velocity, and the Mach number is related to the velocity
through the LBM pseudo-sound-speed, cs, by M ¼ u=cs. This has
led to the typical statement that simulations with M 6 0:1 result
in negligible error, which is appropriate in many cases. However,
the recent interest in more sensitive parameters such as normal
stress differences, suspension pressures, and particle diffusivity
indicates that these errors may be important. The effect of these er-
rors on the calculation of the particle stresslet is especially impor-
tant. In this paper, the Galilean error in the LBM bounce-back and
its effect on particle dynamics and stresslet calculations are quan-
tified, and a correction is proposed.

2. Lattice-Boltzmann method

The lattice-Boltzmann method is the evolution of lattice-gas
automata, in which additional averaging is used to smooth the sta-
tistical fluctuations inherent in lattice-gas simulations. Early in the
application of the LBM to particle suspensions, two major variants
were developed. The first simulates particles as shells with an
internal fluid (Ladd, 1994a,b), and the second simulates particles
as solid objects with a virtual fluid that has no impact on particle
dynamics (Aidun and Lu, 1995; Aidun et al., 1998). Both methods
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Fig. 1. Fully relaxed fluid node adjacent to a moving boundary, referred to as a fluid
boundary node (FBN). Boundary links shown crossing solid boundary.
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give accurate results for non-colloidal suspensions where inertial
lag is not important (Heemels et al., 2000), and the relative merits
of each method have been covered (Ladd and Verberg, 2001); how-
ever, important differences appear when looking at errors causing
Galilean invariance.

In the LBM, the Boltzmann equation is discretized in velocity
space in terms of lattice velocity vectors, ei, which results in the
creation of lattice nodes found at Cartesian positions, r. At each lat-
tice node, a distribution of fluid particles fi exists for every lattice
direction, where the index i refers to the lattice direction. The time
evolution of these distributions is governed by subsequent colli-
sion and streaming operations. In the case of the widely used sin-
gle-relaxation-time linear collision operator, the update can be
expressed as

fiðrþ ei; t þ 1Þ ¼ fiðr; tÞ �
1
s

fiðr; tÞ � f ðeqÞ
i ðr; tÞ

� �
; ð1Þ

where f ðeqÞ
i ðr; tÞ is the equilibrium distribution function, and the col-

lision operation is related to the fluid viscosity by s ¼ m=c2
s þ 1=2. It

is important to note that the issues discussed here are also applica-
ble to the more general collision operators. Macroscopic fluid vari-
ables are recovered through moments of the distribution function,
shown asX

i

fiðr; tÞ ¼ q
X

i

fiðr; tÞei ¼ qu
X

i

fiðr; tÞeiei ¼ c2
s qIþ quu;

ð2Þ

where q is the fluid density and u is the fluid velocity. The most
common variants are the D2Q9, for 2-dimensional 9-velocity, and
D3Q19, for 3-dimensional 19-velocity, models. The equilibrium dis-
tribution is calculated as a function of the macroscopic fluid vari-
ables q and u, which are related to the fluid distribution through
moments in (2). The equilibrium distribution is expressed as

f ðeqÞ
i ¼ wiq 1þ 1

c2
s
ðei � uÞ þ

1
2c4

s
ðei � uÞ2 �

1
2c2

s
u2

� �
: ð3Þ

For the D2Q9 model, values for wi are 4/9 for the rest direction, 1/9
for the non-diagonal directions, and 1/36 for the diagonal direc-
tions. For the D3Q19 model, values for wi are 1/3, 1/18, and 1/36
for the rest, non-diagonal, and diagonal directions, respectively.
The pseudo-sound-speed, cs, is

ffiffiffiffiffiffiffiffi
1=3

p
in both cases, and this value

will be used hereafter.
The LBM fluid and solid particle are coupled through a moving-

boundary bounce-back condition. The momentum of the fluid dis-
tribution adjacent to a moving boundary is adjusted according to

fiðr; t þ 1Þ ¼ fi0 ðr; tþÞ þ 6qwiub � ei ð4Þ

for a boundary link (BL) in the i0 direction, where i0 is the direction
opposite of i, and tþ denotes the time post collision but prior to
streaming in (1). Assuming a time step of one and uniform distribu-
tion of force over a single time step, the adjustment in (4) corre-
sponds to a traction force on the object of

FðbÞ
i0

rþ 1
2

ei0 ; t
� �

¼ �2ei fi0 ðr; tþÞ þ 3qwiub � ei½ �: ð5Þ

Total force and torque are given by summations over all boundary
links according to

F ¼
X

BL

FðbÞ
i0

rþ 1
2

ei0 ; t
� �

ð6Þ

T ¼
X

BL

rþ 1
2

ei0 � r0

� �
� FðbÞ

i0
rþ 1

2
ei0 ; t

� �
; ð7Þ

where r0 is the particle’s center of mass. Particle dynamics are cal-
culated using Newtonian mechanics. Typical schemes include expli-
cit integration (Aidun et al., 1998; Ding and Aidun, 2003) and
implicit integration (Nguyen and Ladd, 2002).

3. Analysis

3.1. Calculation of error term

To calculate Galilean errors, consider a moving boundary adja-
cent to a fluid node as depicted in Fig. 1. A fluid node adjacent to
a solid surface is called a fluid boundary node (FBN), and the point
of force application, which is the midpoint on the boundary link, is
called the mid node. In a fully relaxed system in which the mesh
size tends to zero, the FBNs relax to an equilibrium distribution
approaching the boundary velocity, ub, and no force should be ap-
plied on the boundary. Calculating the equilibrium distribution
using the boundary velocity with (3) and substituting into (5) re-
sults in an error term given by

FðerrÞ
i0
¼ �2qwiei 1þ 9

2
ðei � ubÞ2 �

3
2

u2
b

� �
: ð8Þ

Clearly, the quadratic terms in the equilibrium distribution break
Galilean invariance. It is important to note that when simulating
fluid-filled shells, there exists a corresponding internal fluid node
which exactly cancels the error present in (8); therefore, no error
in particle force and torque exists. When simulating a solid particle,
however, the internal fluid has no impact on particle dynamics, thus
global errors in force and torque calculations may exist. Both meth-
ods have errors in external traction vector calculations typically
used in the calculation of the particle contribution to suspension
stress.

3.2. Correction

The Galilean error in (8) can be canceled by creating an internal
boundary node (IBN) with a distribution set to f ðeqÞ

i ðq;ubÞ at every
link endpoint inside the particle, as shown in Fig. 1. The distribu-
tions from the IBNs then undergo the normal bounce-back opera-
tion, and the force is applied to the particle exactly canceling the
error terms (MacMeccan, 2007, pp. 57–61). The equilibrium distri-
bution in these internal nodes can be calculated in a link-by-link
manner and only in the necessary directions for computational
efficiency. Recently, Caiazzo and Junk (2008) have analyzed the
bounce-back operation using a diffusive scaling for the LBM (Junk
et al., 2005) and recovered an identical error term. They propose a
corrected bounce-back operation by subtracting (8) from (5)
directly. Both methods are equivalent.
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In order to gauge the impact of this link-wise error, first esti-
mate the effect of one FBN by adding the errors from all boundary
links crossing the surface. Eliminating discretization effects, the
boundary velocity for all links emanating from the same FBN will
be equal. For the vertical wall shown in Fig. 1 with a D2Q9 LBM
scheme, the errors from (8) are summed to result in

FðerrÞ
FBN ¼ �q

1=3þ u2
bx

ubxuby

" #
; ð9Þ

where ubx and uby are the x and y components of the boundary
velocity. Also note that the length of the surface described by one
FBN is a single lattice unit making the expression in (9) equivalent
to a stress. A similar analysis can be performed for a horizontal wall,
and the results can be generalized to handle either side of the wall
via the boundary normal vector, n. The resulting error terms, desig-
nated with V and H for vertical and horizontal, are

FðerrÞ
FBN�V ¼ �q

nx

jnxj
1=3þ u2

bx

ubxuby

" #
; FðerrÞ

FBN�H ¼ �q
ny

jnyj
ubxuby

1=3þ u2
by

" #
:

ð10Þ

The goal is to extend the discrete results from (10) to arbitrarily
oriented surfaces in a continuous fashion. In the LBM, a smooth ob-
ject is represented by mid nodes that reside on the midpoint of
links crossing the solid surface, as illustrated in Fig. 2. This discret-
ization results in a stair-stepping effect such that an inclined sur-
face is represented by a combination of vertical and horizontal
surfaces. Thus, for an arbitrarily oriented surface, the error can
be approximated as a combination of errors from both horizontal
and vertical surfaces, with appropriate weighting for the projected
area. Such an assumption also agrees with the isotropic structure
of the lattice. Thus, the boundary force on an arbitrarily aligned
surface element can be expressed as

dFðerrÞ ¼ jnxjFðerrÞ
FBN�V þ jnyjFðerrÞ

FBN�H; ð11Þ

which can be simplified to

dFðerrÞ ¼ �q
nx 1=3þ u2

bx

	 

þ nyubxuby

ny 1=3þ u2
by

� �
þ nxubxuby

2
4

3
5: ð12Þ

A similar analysis can be performed for the D3Q19 lattice model,
and the error in boundary force can be described as
FBN

mid node

ideal solid 
boundary

LBM solid 
boundary

Fig. 2. Discretization of smooth particle by links crossing particle boundary
creating a combination of horizontal and vertical surfaces. Actual particle boundary
shown by heavy blue line, and particle boundary as seen by the LBM shown by
dotted red line. Applying proposed correction would put IBNs at all link endpoints
within the particle (not shown).
dFðerrÞ ¼ �q

nx 1=3þ u2
bx

	 

þ nyubxuby þ nzubxubz

ny 1=3þ u2
by

� �
þ nxubxuby þ nzubyubz

nz 1=3þ u2
bz

	 

þ nxubxubz þ nyubyubz

2
664

3
775: ð13Þ

In both 2-dimensional and 3-dimensional cases, the normal forces
created by the Galilean error can be expressed as

dFðerrÞ � n ¼ �q 1=3þ ðub � nÞ2
h i

: ð14Þ

The first term is simply the hydrostatic pressure found in the LBM,
where P ¼ c2

s q, and can typically be neglected. The second term
breaks Galilean invariance and creates errors in normal stresses that
scale as u2.

3.3. Effect on rheology calculations

By inspection, (14) creates an artificial normal stress on the fore
and aft surface of a translating particle. Quantifying the impact of
the normal error on the calculation of total force and particle
stresslet is found by integrating over the differential error. The
stresslet is simply a measure quantifying the effect of a suspended
particle on the average stress in the suspension. In terms of particle
stresslet, S, the volume-averaged stress in a 3-dimensional suspen-
sion can be expressed as

R ¼ �PIþ 2lEþ 1
V

X
S; ð15Þ

where R is the average stress in the suspension, P is the mean fluid
pressure, E is the average rate-of-strain tensor, V is the domain vol-
ume, and l is the suspending fluid viscosity (Batchelor, 1970). The
summation is over all particles in the domain. The force and stress-
let errors are calculated by integrating on the particle surface, C,
shown as

FðerrÞ ¼
Z

dFðerrÞdC ð16Þ

for the error in total force on the particle, and

SðerrÞ ¼
Z

1
2

dFðerrÞxþ xdFðerrÞ
� �

dC ð17Þ

for the error in particle stresslet, where x is a vector from the center
of the particle to the surface. Consider a spherical particle in simple
shear in which the particle is traveling with the local fluid velocity,
Ux, and rotating with the local rotation of the fluid, _c=2, where _c is
the shear rate. Such situations frequently arise during simulations,
such as a particle in simple shear near a domain wall, as shown in
Fig. 3. Calculating the integrals in (16) and (17) with the appropriate
boundary velocity and neglecting the isotropic static pressure re-
sults in error terms of
Fig. 3. Particle in simple shear near the domain border in a large-scale simulation is
analogous to a particle with superposed shear and translational velocity.
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FðerrÞ
y ¼ �qVp _cUx=2 ð18Þ

and

SðerrÞ
11 ¼ �qVpU2

x ; ð19Þ

where Vp is the volume of the particle. All other force and stresslet
errors are zero. Substituting the error terms into (15) gives an idea
of the suspension-level impact, as the error in suspension stress can
be written as

RðerrÞ
11 ¼ �q/U2

x ; ð20Þ

where / is the volume (or areal) fraction of the suspended phase. It
is worth mentioning that the suspension stress calculation neglects
inertial terms that may need to be present in addition to the stress-
let at finite Reynolds number; however, the purpose of this study is
to demonstrate the error in the stresslet calculation. Galilean errors
are independent of Reynolds number, since Galilean shifts do not
necessarily change the particle Reynolds number, defined as
Rep ¼ q _cR2=l where R is the particle radius. For suspensions of rigid
spheres, normal stresses are small at low concentrations ð6 20%Þ,
with magnitudes of Oð10�2Þ when normalized by l _c (Sierou and
Brady, 2002). At these small magnitudes, errors in (20) may be sig-
nificant. The correction described in Section 3.2 can eliminate these
errors.

3.4. Simulations

The simplest test case is a sphere suspended centered in a wall-
bounded domain, in which the fluid, walls, and sphere have the
same translational velocity. Physically, this is equivalent to a sta-
tionary sphere in a quiescent fluid. Such a case does not result in
a force error since _c ¼ 0; however, it does result in an error in
the stresslet calculation. Fig. 4 shows the stresslet error as a func-
tion of translational velocity, and the results scale as U2

x . The results
for the corrected bounce-back are not shown, but errors are
Oð10�11Þ or less in all cases. Inset in the figure is a graphic of the
particle showing the normal stress on the particle’s surface, where
warm colors denote high stress areas (color online). The simulation
domain is 64 � 64 � 64 lattice nodes, and the particle has a radius
of 10 lattice nodes, but the results are insensitive to domain size
since the fluid distributions never depart from equilibrium. A net
force of zero is recorded in all cases as predicted by (18) (not
shown).

Next, a sphere is suspended centered in wall-bounded shear
such that it rotates and translates, as shown on the right side
0.001 0.01 0.1
0.001

0.01

0.1

1

10

100

simulation
analytic prediction

S 1
1

Ux

Ux

Fig. 4. Effect of translational velocity on S11. Inset in figure is a graphical depiction
of exaggerated normal stresses on fore and aft surfaces of sphere. Not shown are
results with the corrected bounce-back showing Oð10�11Þ error or less in all cases.
of Fig. 3. An error in the y-component of total force that in-
creases linearly with both the shear rate and translational veloc-
ity is shown in the dependence of force on Ux _c in (18). These
simulations measure the error in force directly by fixing the
sphere in the y-direction only. All other degrees of freedom in
motion are allowed. For the 3-dimensional simulation shown,
the domain is 64 � 128 � 64 lattice nodes, with a particle radius
of 10 lattice nodes. The top and bottom wall are initialized to
Ux � _cH=2 and Ux þ _cH=2, respectively, where H is the domain
height. Results for the y-component of force are shown in
Fig. 5(a,b) for fluid-filled particles, solid particles with corrected
and uncorrected bounce-back operations, and the analytic pre-
dictions. Also shown are results for the external boundary force
(EBF) method (Wu and Aidun, in press), which is not based on
the bounce-back procedure and thus does not display Galilean
errors. In Fig. 5a the translational velocity is held constant while
the shear rate is altered, and in Fig. 5b the shear rate is held con-
stant while the translational velocity is altered. The force error
shows a linear dependence on Ux _c in both cases, as predicted
by (18). A slight drift occurs in the results, especially in Fig. 5b
where the translational velocity is increased. One possible expla-
nation is the compressibility error which scales as U2

x . Although
the Galilean invariant portion of the error is corrected, compress-
ibility artifacts still exist at high Mach number. Another possible
source of error is the finite discretization of the particle. Never-
theless, the predicted scaling in the error term is demonstrated.
Stresslet results agree with the scaling in (19) and echo the find-
ings in Fig. 4.
Ux
.
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Fig. 5. Force error for sphere suspended in simple shear. In (a), the translational
velocity is constant at 0.01, and the shear rate is changed. In (b), the translational
velocity is varied while the shear rate is held constant at 2:5� 10�5.
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4. Conclusions

In this paper, the effect of a moving reference frame was studied
for the lattice-Boltzmann method, with a focus on how Galilean er-
rors in the bounce-back boundary condition affect particle dynam-
ics and rheology calculations in sheared suspensions. First, a link-
wise error term was derived by considering a fully relaxed system,
and this error term was shown to scale as u2. Next, the link-wise
error was extended to surface integrals to calculate errors in force
and stresslet. Corrections to reduce the error were proposed, and
simulations were performed to validate the calculations.

In the vast majority of cases, the effect of Galilean errors are
negligible in terms of particle dynamics and stresslet calculations.
In fact, fluid-filled shells show no errors in dynamics, as the inter-
nal fluid exactly cancels the link-wise error. However, in quantities
dependent on external traction vectors such as normal stress dif-
ferences in suspensions, magnitudes are exceedingly small, and
these Galilean errors may be significant. Also, cases sensitive to
particle trajectory may be influenced through the drift induced
by the errors in particle force for solid particles. The use of the pro-
posed correction can eliminate these errors and allow more sensi-
tive resolutions of rheological properties.
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